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The inviscid stability of the laminar mixing of two parallel streams of a 
compressible fluid is investigated with respect to three-dimensional wavy 
disturbances. The flow is more unstable as the angle between the disturbance- 
wave-number vector and the principal-flow direction becomes larger. With 
three-dimensional disturbances, subsonic disturbances exist even at  very high 
Mach number, and the flow is still unstable. However, it is also found that 
increasing the Mach number of the flow tends to stabilize the flow. 

1. Introduction 
The stability of the viscous flow that has no solid boundary was first investi- 

gated by Lessen (1949) and Chiarulli (1949) for the half jet, the laminar mixing of 
two parallel streams, of an incompressible fluid. Since then, many investigations 
on flows of this type have been made; among them the stability of a two-dimen- 
sional laminar jet of both incompressible and compressible fluid was explored by 
Pai (1951), that of the half jet of a compressible fluid was treated by Lin (1953), 
and some more cases were treated by Lessen, Fox and others (1954). However, 
they only considered two-dimensional wavy disturbances propagating along the 
main-flow direction. The stability of the jet-type flow of a compressible fluid with 
three-dimensional disturbances has rarely been treated. 

For incompressible parallel flow, every three-dimensional disturbance was 
proved (Squire 1933) to be equivalent to a two-dimensional one at  a lower 
Reynolds number; therefore, a consideration of two-dimensional disturbance 
was sufficient. For compressible flow, because of the complication of the distur- 
bance equations, no prediction about which kind of disturbance tends to be more 
unstable was made until Dunn & Lin (1955) succeeded in simplifying the dis- 
turbance equations by an order-of-magnitude analysis. Contrary to the incom- 
pressible case, three-dimensional disturbances were found to play an important 
role in the stability problem of compressible flow. Recently, Lessen, Fox & Zien 
(1965) considered the instability of jets and wakes of an inviscid compressible 
fluid. It was shown that these flows are also more unstable as the wave-propaga- 
tion angle relative to the main flow becomes larger. 

The main purpose of the present paper is to investigate the influence of the 
Mach number of the flow and the angle of wave propagation on the stability 
characteristics of the laminar mixing of two streams of a compressible fluid. 
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Studies will be made in the case of infinite Reynolds number, not only because of 
its mathematical simplification but also because a great deal of information is 
given by this approach. We consider the flow with infinitesimal subsonic distur- 
bances, i.e. the wave speed of the disturbances relative to the velocity of the flow 
in the direction of wave propagation is less than the local sonic speed; this is done 
because supersonic disturbances, which are often neglected in stability con- 
siderations, are less destabilizing than subsonic ones (Lessen et al. 1965). 

To carry out the numerical calculation, we first need the velocity and the 
temperature profiles. Since it has been pointed out that the exact distributions 
of velocity and temperature have only a secondary influence on the stability 
characteristics in the mixing zone (Lin 1953), we use the approximations that the 
Prandtl number for the fluid is unity and that the viscosity varies linearly with 
the absolute temperature. With these approximations, we may apply the 
Howarth-Dorodnitzn transformation to obtain a new co-ordinate in which 
velocity distributions for different Mach numbers remain the same. The foregoing 
greatly simplifies the numerical calculations, and the final result is expected to be 
quite accurate even at higher Mach numbers. 

2. Basic equations 
Consider a two-dimensional flow of two parallel, semi-infinitely extended 

streams. Assume that the main flow is parallel and that it is subjected to small 
disturbances. Thus, with the initial upper stream velocity U;" as the reference 
velocity, the dimensionless velocity components in Cartesian co-ordinates are 
given by 

u, = ;ii + u', uy = v', uz = w', (1)  

and all other quantities by q = q + $ .  (2) 

The main-flow pressure is assumed constant through the flow. All other main- 
flow quantities are functions of y only; all disturbance quantities are functions 
of x, y, x and t .  The reference length is chosen as 1" = (v;"x*/ U:)*, and the reference 
time t* = l*lU;", where v;" is the kinetic viscosity of the initial upper stream, and 
quantities with asterisk superscripts are dimensional. 

Consider the disturbance to be an oblique plane wave propagating at an angle 
with respect to the x-direction. The disturbance quantities in dimensionless form 
can be expressed as 

U','tJ',W' = {f(y),a4(y),h(y)}eXP [i(ax+PZ-act)l, 

P', T', P' = {n(Y), B(Y), r(y)} exp [ i (ax  +Pz - act)], (3) 
where p',  T' and p' are the pressure, temperature and density disturbances to the 
flow respectively, with the initial upper-stream mean-flow quantities as reference 
quantities. The wave-propagation angle is obtained from the relation 

0 = cos-"a(a2+/32)-*]. (4) 

In  (3), c is complex, that is c = c, + ic,. The real part of c is the wave-propagation 
velocity in the x-direction; the imaginary part of c indicates whether the distur- 
bance is amplified, neutral, or damped, according to whether ci is positive, zero, 
or negative. 
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For the case of infinite Reynolds number, the linearized disturbance equations 
for a compressible, heat-conducting fluid with constant specific heats are given 
by (Dunn & Lin 1955): 

continuity, ia(B-c)r+ap’$+p(iaf+iph+a$‘) = 0; ( 5 )  
momentum, P[i(;Ei - c) f + B’q5-j = - (i/yMX) n, (6) 

ia”(B-c)$ = - ( l /yM;)n’ ,  (7 )  

~lp(;ii - C )  h = - (P/rMg) n; ( 8 )  

energy, ap[ i (B-c )0+p”$]  = - ( y -  l)pT(iaf+iPh+a$’); (9) 

state, n/ji = r / p  -+ e/T; (10) 

here y is the specific heats ratio, M, the Mach number of the upper stream, and 
the primes represent the derivatives of a quantity with respect toy. In  the above 
equations the Prandtl number is taken as unity, and the effect of gravity is 
neglected. 

Here we introduce the following transformations which are due to Squire (1933) 

(11)  

(12) 

(13) 

(14) 

p[i(U-c)B+T’$] = - ( y -  l)pF($+if), (15) 

i i / p  = alp+ QT. (16) 

i 
Ef = a. +Ph, 

E$ = a$, 
Eii = an, 
Er“ = ar, 

i (B-c)?+p($’+i f )+j j tq3  = 0, 

E B  = a0, 

E% = am, 

di = d(a2-@2), 

EL@ = aM,. 
Thus, equations (5) to (10) become 

ji[i(E-- c ) f +  U’& = - ie/yL@2, 
ag[i(u - c )  $1 = - e’/yL@2, 

These transformed equations have the same form as those for the flow with two- 
dimensional disturbances. They can be reduced into a differential equation for 
each dependent variable. For the transformed pressure disturbance, we have 

3. Velocity and temperature distributions 
To obtain an approximate velocity profile for stability considerations, we will 

assume that the viscosity varies linearly with the absolute temperature (Lees 
1947). With this assumption, the steady-state equation of motion and the energy 
equation become uncoupled. We will follow the procedure given by Howarth 
(1948) to obtain a new co-ordinate system (x*, Y*) in which the velocity distribu- 
tions remain the same for different Mach numbers. 

Let 

t In this section, all quantities are dimensional. 
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and the stream function 
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$*(x*, y*) = x*(x*, Y*). 

From the continuity equation, the velocity is related to the stream function by 

u* = $ -* (a,.),; a$* 
= 9 (g*)z; (S) . 2. 

Since the pressure is assumed constant, one may write for an ideal gas 

p*/p; = T;/F*. ( 2 1 )  

Therefore, u* = ax*/ay*. (22) 

The equation of motion for the steady flow of a compressible fluid is 

The derivatives of the velocity are then 

and 

By introducing the relation 

equation (23) becomes, in (x*, Y*) co-ordinates, 

p*/p;  = F * / Q ,  

Since for an incompressible fluid, the equation of motion in terms of stream 
function is given by 

(28) 

we see that, regardless of different Mach numbers, the velocity distribution in 
(x*, Y*) co-ordinates in our approximation is the same as that in (x*,y*) co- 
ordinates for an incompressible fluid. 

a2$* a$* a2$*a$* p;a3$* 

ax* ay* ay* ay*2 ax* p; ay*3 ' 
_ _ _ ~ _ _ _ _ _  =-- 

We further assume that the flow is iso-energetic, so that 

C$F* + 1 - * ~ * 2  2P = const. (29) 

Therefore, the temperature is given by 

T* = Q [ 1  ++(y-  1) Mi(1-  (;il*2/Z$2)}]. (30)  

4. Inviscid solution 
In  a dimensionless Y-co-ordinate, equation (17) is written as 

i3 - [ z q u  - c)] 8 - di2F[T- @(Ti  - c)2] 8 = 0, 

where 1') = d( ) / d Y .  
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The asymptotic behaviour of 75 is that 

Let G = k/di2F-it. (33) 
Then equation (31) becomes 

8 = [T-B2(; i l -c)2]+ (u:c G - d i ~ G 2 .  (34) 

From (32), the boundary conditions for G are 

For a neutral inviscid disturbance Lees & Lin (1946) have shown that the 
necessary and sufficient condition for its existence is that 

[f (;g)Ic = 0 

at the critical point. From this equation we can determine the neutral wave 
speed cs. Thus, our problem reduces to the determination of the characteristic 
value a" that satisfies (34) and (35). 

Note that there is a singularity a t  U = c,. To avoid the singularity we integrate 
(34) along the path below the singularity in the complex Y-plane. By choosing 
this path, G ,  2, and in (34) are complex, but they must have real values on the 
real axis for neutral disturbances. It is also possible to determine the charac- 
teristic values for amplified or damped disturbances by integration along this 
path. 

5. Partial derivatives of c 
Some important stability characteristics can be examined from the changes of 

ci with respect to di, Mo and 0. It has been shown that [&/a( - az)lMO, always has 
a positive imaginary part (Lin 1953). Thus, for any wave-number a larger than 
the neutral wave-number the flow is stable, at least for large Reynolds numbers. 
Here, we will derive expressions for 

(ac/a4Mo, 0, (w%fo,, and ( a C l a J 4 0 ) ,  2. 

The differentiation of equation (31) with respect to a", keeping Mo and 0 con- 
stant, yields 

- 2diTyT - @(a - c)2] ii - 2&2FB2(U - c )  77(ac/aa")Mo, Q = 0, (37) 
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Multiplying (37) by fi and (31) by ff;, and subtracting the results, one gets 
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577g - 8z  77 - [2u'/(U - c)]  ($772 - & 77) 

Multiplying equation (38) by ~ / ( S - C ) ~ ,  integrating from Y = --co to Y = +a, 
and noting that 

jfa 6 - fiiiaj Y =+ m 

= 0, (39) (u-c)2 ly=-oo 
-2 

(Ti - c)3 

where 

By repeating the same procedure, but keeping only 0 constant, it  follows that 

In  obtaining equation (41) we have taken advantage of the fact that the velocity 
is independent of the Mach number in the transformed Y-co-ordinate. Since 

it follows from (41) that 

The expression for ; is obtained in a similar way as 

6. Numerical calculations 
Numerical calculation has been made for the flow with initially zero velocity 

for the lower stream. The velocity distributions along the real axis of Y and along 
the straight line path - 6 - 3 i  to 6 + Oi in the complex Y-plane are calculated by 
using the method given by Lessen (1950). The calculation starts from the asym- 
ptotic solution at large negative Y 

where a = 1.23849387. The function F satisfies the boundary-layer equation 

F F + 2 P  = 0, (46) 
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U( Y )  = P (  Y ) .  (47) and 5 is obtained from 

Higher derivatives of F are easily obtained; values of F and its derivatives can 
then be obtained step by step along the desired paths by a Taylor series expansion. 
Table 1 gives the neutral wave speed for different Mach numbers. 

M CS 

0.0 0.5872700 
0.5 0-6029153 
1.0 0.6460949 
1.5 0.7056756 

M CS 

2.0 0-76661 33 
3.0 0.8576864 
4.0 0.9084932 
5.0 009369957 

TABLE 1. Neutral wave speed c, for different Mach numbers 

4 

3 

2 

1 

-2 

- 3  

-4  
-6 -4 -2 0 2 4 6 

FIGURE 1. Function G (G, solid lines and C, broken lines) for different Mach numbers 
along the complex path Yi = tY,- 1.5 at 0 = 60". 

The integration of (34) also starts from the asymptotic solution 

G( Y )  = b, + b, eiaY + b, ear + b, eaaY + . . ., (48) 
where b,, b,, b, and b, are given in the Appendix. For illustration, values for G for 
different Mach numbers at  0 = 60" are plotted in figure 1. 

At small Mach numbers, the pressure disturbance along the complex path, 
shown in figures 2, 3 and 4, has the same behaviour as the vertical velocity 
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disturbance along the real path calculated by Lin (1953). At higher Mach 
numbers, ii has one or more nodes, and between = 1 to  4 for Mo > 4 the slope is 
very steep, which is partly due to the co-ordinate transformation. 

Figure 5 gives values of di corresponding to neutral subsonic disturbance for 
different Mach numbers at different wave-propagation angles. For incom- 
pressible flow, the value agrees with that obtained by Lessen (1950). 

The contribution of integrations for (a~/adi),~, @, (a~/a@),~,, and ( i % / ~ M , ) ~ , ~  
from Y = -a to -6-3i and from Y = 6 + 0 i  to +a are small; therefore, 
integrations were carried out from Y = - 6 - 3i to 6 + 03. The results are shown 
in tables 2, 3 and 4. 

I I I I I I I 
0 0.1 0.2 0 3  0.4 0.5 0.6 0 7  0.8 

c, or c, 

FIGURE 6.  E vs c for M = 0. Curves are obtained by Lessen, Fox et al. (1954). 
Broken lines are slopes obtained from the present calculation. 

In  figure 6, we compare our result of (ac/a~?),~, for the incompressible case 
with the (c ,  a) curve obtained by Lessen, Fox et al. (1954). Lin (1953) calculated 
(a~ /ad i ) ,~ ,~  for the incompressible case and for M, = 1 at 0 = 0"; he had the 
values of 0.093-0.2873 and 0.1 77-0.209i, respectively. Since he took a reference 
length which is 28 times that of ours, the results are in good agreement with our 
0.259-0.817i and 0.462-0.783i. 

A comparison of the present result with the result obtained from the stability 
of a single, plane vortex sheet has been made. For a plane vortex sheet the flow 
is unstable, for any wave-number a t  0 = 0", when the Mach number is smaller 
than 2% for the case of equal sonic velocities of both streams, or 2.5 for the case 
of iso-energetic flow (Miles 1958). While in our case, when 0 = 0", neutral 
stability can exist for certain wave-numbers even at zero and very small Mach 
number. However, general stability characteristics, such as the influences of 
the Mach number and the wave-propagation angle, are similar in both con- 
siderations. 

7. Conclusions 
As a result of the foregoing calculations for the laminar mixing of two com- 

pressible streams, we draw the following conclusions for the case of infinite or 
very large Reynolds number: 
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( 1 )  The flow is more unstable as the wave-propagation angle 0 becomes larger, 
since the sign of the imaginary part of (a~/a@),~,a is always positive (table 3). 
However, the rate of change of ci with respect to 0 decreases as 0 increases. 

( 2 )  The previous result (Lin 1953), that when M, > 1.7 the flow is stable 
because of the non-existence of the subsonic disturbance, is only true for distur- 
bances propagating along the flow direction. At a larger wave-propagation angle 
a subsonic disturbance can exist, and the flow continues to be unstable. 

(3) As the Mach number increases the flow becomes less unstable. This is clear 
from table 4. 
(4) The range of wave-number for instability has a minimum value a t  about 

No = 2 (figure 5 ) .  
( 5 )  The increase of wave-number at  a given Mach number and 0 is always less 

destabilizing, because ( a~/a&),~, always has a negative imaginary part (table 2 ) .  

This work was supported in part by a grant from the Office of Naval Research, 
U.S.A. 

Appendix. Asymptotic solutions 
At large negative Y ,  from (45) and (47), the velocity is given by 

Ti = uz[ietaP - &eaY + (3l28.8) e%aY + . . .I. 

T = 11 + &(y - 1 )N;] + i ( y  - 1) a4N;(ear - e#aY + . . . 1. 

(A 1) 

(A 2 )  

From (30), the temperature has the form 

Thus (34) becomes 
k = ( h , + h , e ) a ~ + h 2 e a P + h 3 e ~ a P +  ...) 

+ (h4 e&aY + h5 eaP + h6 ,gay) G + (h, +ha eaP + h, e*aP)-G2, (A 3) 

where h, = 1 + +(y - 1)XO” - B2c2,  

h, = B 2 ~ a 2 ,  

h, = - + [ B 2 ( c d + + ~ 4 ) + $ ( y -  i ) ~ ; a 4 ] ,  

h, = a4[3(y - 1)M; + &B2] + (3/14.4)B2ca2, 

h4 = -a3/2c, 

h, = -&“l++(y-l)M;],  

ha = 4&2a4(y- 1) ME, 

and h9 = -h8. 

Equation (A 3) implies the following solution for G, 

B = b,+ b, e * a ~  + b2eaP + b, e#aP + .. .. 
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The asympotic solution for 8 can be written as 

f i (  Y )  = no( Y )  +n,( Y )  e'ay + nz( Y )  eaP + , ... (A 5 )  

Substitute this into equation (33), equate terms of the same power of eaY and 
one obtains 

- e b o s y ,  
0 -  

n, = (2/a)sb,ebo5Y, 

nz = (Z2/a) [ - t (Y-  1)Mia4b,+{1+4(y- l)Mg)(bz+ (2bi/a)s)]ebosP, and 

where s = Z2[l +a?( - l ) M 3  
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